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Abstract

The DynaFit software package (http://www.biokin.com/dynafit/) allows the user
to specify the theoretical model for an arbitrary bio/chemical mechanism by using a symbolic
rather than mathematical notation. However, for convenience, DynaFit also contains a small
number of built-in, predefined fitting models. This Technical Note describes a family of prede-
fined algebraic fitting models that describe the time-course of enzyme reactions conforming to
the classic Michaelis-Menten kinetic mechanism. An illustrative example includes previously
published data on the substrate kinetics of α-ketosteroid reductase. It is shown that the least
squares fit of a single enzymatic progress curve, observed at an optimally chosen substrate con-
centration, results in a KM value that is exactly identical to the value obtained by using the much
laborious and less precise initial rate method.
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1. Introduction

Arguably the main advantage of software package DynaFit [1, 2] lies in that user can specify
the mathematical model for any chemical, biochemical, or biophysical process by using the
symbolic notation, rather than by using the often tedious mathematical formalism. For example,
to specify the time-course of an enzyme reaction that follows the familiar Michaelis-Menten
mechanism [3, p. 19], the user might input the following text:

[task]
data = progress
...

[mechanism]
E + S <==> E.S : k1 k-1
E.S ---> E + P : k2

[constants]
k1 = ..., k-1 = ...
k2 = ...

[concentrations]
E = ...
S = ...

[responses]
P = ...

When presented with this symbolic input, the DynaFit software package automatically de-
rives a system of first-order ordinary differential equation (ODEs) corresponding to the specified
mechanism. The internally derived system of differential equations can then be used to either
simulate artificial data or, more importantly, to fit any available experimental data with the aim
of determining the microscopic rate constants k1, k−1, and k2.

Aside form this ability to construct an arbitrary mathematical model “on the fly”, the Dy-
naFit software package also contains a certain number of built-in (“hard-wired”) mathematical
models encoded in a streamlined fashion, frequently using specialized the algebraic (as opposed
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to differential-equation) formalism. One example of such built-in models is discussed in this
Technical Note.

The catalytic mechanism we are concerned with is depicted in the scheme below, representing
the Michaelis-Menten mechanism, where E is the enzyme, S is the substrate, ES is the Michaelis
complex, and P is the reaction product.

E + S ES
Km

E + P
kcat

The Michaelis-Menten mechanism occurs in enzyme kinetics investigations with such high
frequency that it became convenient to embed an algebraic model for the reaction progress di-
rectly into the software code. Thus, in order specify the reaction time course of any enzyme
reaction following the Michaelis-Menten mechanism, the DynaFit user had the opportunity to
provide much simplified input code, similar to the fragment below:

[task]
data = generic
code = built-in
...

[equation]
MichaelisMentenProgressKmKcat

[parameters]
Km = ...
kcat = ...
Eo = ...
So = ...
rP = ...

In the above encoding, Eo represents the total or analytic enzyme concentration in appro-
priate units; So represents the substrate concentration in identical units; and rP represents the
specific molar response coefficient of the reaction product.

In this Technical Note we illustrate the utility of this particular fitting model, “hard-coded”
into DynaFit, but analyzing previously published [4] experimental data representing the substrate
kinetics of 5α-ketosteroid reductase. It is shown that by applying the build-in algebraic model to
a single enzymatic progress curve, we obtained the same results as those that were previously [5]
obtained from multiple progress curves, using the standard initial rate method.

Thus, the built-in algebraic model for the time course of any enzyme reaction following
the Michaelis-Menten mechanism can potentially lead to significant savings in time, effort, and
material costs.
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2. Methods

2.1. Mathematical models

This section presents a family of two closely related mathematical models predefined in the
software package DynaFit [1, 2]. Both models can be used to fit the time course of enzyme
reactions following the Michaelis-Menten mechanism, with the aim of determining the kinetic
parameters KM, kcat, or kS ≡ kcat/KM. Along with the mathematical definition, each model below
is described also in terms of the encoding of parameter names expected by the software.

2.1.1. Variant 1: KM and kcat

The time course of an enzyme reaction following the Michaelis-Menten kinetic mechanism
[3, p. 19] can be conveniently described by Eqn (1) [6–8], where F is some appropriate ex-
perimental variable, such as for example fluorescence, recorded at the reaction time t; F0 is the
experimental signal observed at t = 0 (i.e., baseline offset – essentially a property of the in-
strument); [S]0 is the initial substrate concentration; KM is the Michaelis constant; and rP is the
specific molar response coefficient of the reaction product; [E]0 is the concentration of the en-
zyme active sites; t is the reaction time; and kcat is the turnover number. The symbol ω represents
the value of the Lambert omega function, also referred to as Lambert W function [6–8]. Eqn (2)
represents the instantaneous observed reaction rate, i.e., the first derivative with respect to time
t of the physical variable F being monitored.

F = F0 + rP

{
[S]0 − KM ω

[
[S]0

KM
exp

(
[S]0

KM
− kcat

KM
[E]0 t

)]}
(1)

dF
dt

= rP kcat [E]0
α

1 + α
(2)

The equation name built into DynaFit is MichaelisMentenProgressKmKcat. The
names of model parameters expected by DynaFit encoding are shown in the table below:

parameter symbol encoding

reaction time (independent variable) t t
enzyme concentration [E]0 Eo
substrate concentration [S]0 So
turnover number kcat kcat
Michaelis constant KM Km
molar response coefficient of product rP rP
baseline offset F0 Fo

2.1.2. Variant 2: KM and kS

An alternate, and algebraically equivalent way of expressing the integrated rate law is given
by the recently proposed [9] Eqn (3). In this case, the integrated rate equation does not contain
kcat as a model parameter, but rather kS (and KM, as before). Note that kS is the specificity number
defined as kcat/KM. Note that kS has the dimension of a second-order (bimolecular association)
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rate constant. The derivative of the model function with respect to time, i.e., the instantaneous
observed reaction rate, is defined by Eqn (4).

F = F0 + rP

{
[S]0 − KM ω

[
[S]0

KM
exp

(
[S]0

KM
− kS [E]0 t

)]}
(3)

dF
dt

= rPKM kS [E]0
β

1 + β
(4)

The equation name built into DynaFit is MichaelisMentenProgressKmKs. The names
of model parameters expected by DynaFit encoding are shown in the table below:

parameter symbol encoding

reaction time (independent variable) t
enzyme concentration [E]0 Eo
substrate concentration [S]0 So
specificity number kS ≡ kcat/KM kS
Michaelis constant KM Km
molar response coefficient of product rP rP
baseline offset F0 Fo

The alternate use of Eqn (1) or Eqn (3) depends on which combination of steady-state pa-
rameters (KM or kcat along with kS) is of greater interest to the investigator.

2.2. ANSI C implementation

A number of more or less robust computer codes are available on the Internet, all of which
implement the Lambert Omega function, using a variety of alternate algorithms. DynaFit con-
tains an implementation closely derived from the ANSI C code available from ref. [10] and listed
in Appendix B.

The author of the original code is Dr. Keith Briggs, a senior mathematician at BT Research
(British Telecom) and an Alan Tayler Visiting Lecturer in the Mathematical Institute of the Uni-
versity of Oxford, United Kingdom.

2.3. DynaFit scripting

In order to either fit or simulate the progress of enzyme reactions according to Eqn (1), the
DynaFit input script file must contain at least the following encoding:

[task]
data = generic
code = built-in
...

[equation]
MichaelisMentenProgressKmKcat

[parameters]
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Eo = ...
So = ...
kcat = ...
Km = ...
rP = ...
Fo = ...

[data]
variable t
...

[end]

In order to either fit or simulate the progress of enzyme reactions according to Eqn (3), the
DynaFit input script file must contain at least the following encoding:

[task]
data = generic
code = built-in
...

[equation]
MichaelisMentenProgressKmKs

[parameters]
Eo = ...
So = ...
kS = ...
Km = ...
rP = ...
Fo = ...

[data]
variable t
...

[end]

3. Results and discussion

3.1. Raw experimental data
The enzyme 5α-ketosteroid reductase (active site concentration 50 pM) was used to catalyzes

the conversion of testosterone to dihydrotestosterone (initial concentration 31 nM) in the pres-
ence of NADPH. The reaction was quenched at various times (t = 2, 4, 6, ... 60 minutes) and
analyzed by HPLC with radiometric detection. The raw experimental data taken from ref. [4],
Figure 2, are listed in Table 1. The originally published data (percent product formation) were
converted to absolute product concentrations (nM).

3.2. Least squares fit to Eqn (3)
The experimental data listed in section 3.1 were fitted to Eqn (3) by using the DynaFit script

listed in Appendix A.1. The results are summarized graphically in Figure 1 and numerically in
Table 2.

6



t, sec [P], nM

120 1.99
240 3.86
360 6.05
480 7.90
600 9.53
720 11.77
840 13.22
960 14.70

1080 16.87
1200 17.80
1320 19.65
1440 20.35
1560 21.88
1680 22.84
1800 23.53
2040 25.09
2280 26.67
2520 27.66
2760 28.63
3000 29.12
3240 29.42
3600 29.91

Table 1: Time course of testosterone as substrate ([S]0 = 30 nM) conversion to dihydrotestos-
terone as product ([P]) catalyzed by 5α-ketosteroid reductase. Experimental data form ref. [4],
Figure 2.

3.3. Comparison with published results
Faller et al. [5] determined the KM value for human prostatic 5-alpha reductase, with respect

to testosterone as substrate, by using the conventional method, as follows.1

Multiple enzyme reactions were initiated by the addition of enzyme (25 pg/mL final concen-
tration) to a buffered solution containing 0.4 mM NADPH and [3H]testosterone varied between
5 nM and 120 nM (eight separate experiments). Aliquots were removed after 5, 15, 25, and
35 min of incubation. Reactions were stopped by the addition of 2 mL of diethyl ether. The
organic phase was then transferred into a new tube and evaporated to dryness in a water bath at
40 degrees for 30 min. Samples were resuspended by addition of 50 pL of a solution of ethanol
containing cold testosterone and dihydrotestosterone (2 mg/mL each) as markers and applied
to a silica-impregnated glass fiber sheet. Metabolites were separated by chromatography with
dichloromethane/diethyl ether (9:l) as the running solvent. Steroids were located by spraying
the dried sheets with a solution of pentahydroxyflavone and visualized under illumination at 366
nm. Spots were then cut out and transferred into polyethylene vials containing 6 mL of Irgascint
A300 for scintillation counting, to determine the amount of dihydrotestosterone formed at each

1 Because the method is quite laborious, it deserves to be described in full, in order to give an accurate impression of
the tediousness involved and therefore also an impression of the savings in labor and material that can be achieved by the
present method.

7



0 1000 2000 3000 4000

0
10

20
30

t, sec

[P
], 

nM
re

si
du

al
s

-0.2

0

0.2

0.4

0 1000 2000 3000 4000

0
0.

00
5

0.
01

0.
01

5
t, sec

d(
[P

], 
nM

) 
/ d

t

(a) (b)

Figure 1: Time course of testosterone as substrate ([S]0 = 30 nM) conversion to dihydrotestos-
terone as product ([P]) catalyzed by 5α-ketosteroid reductase. (a). Symbols: raw experimental
data. Smooth curve: best-fit model according to Eqn (1). (b). Symbols: rate-transformed exper-
imental data. Smooth curve: best-fit instantaneous rate curve according to Eqn (2).

time point. The raw data (incubation time vs. dihydrotestosterone formed) were fit to the straight
line model. The slopes derived from each linear fit were treated as the initial rates and were fit to
the Michaelis-Menten equation. The best-fit value of the Michaelis constant was KM = (20 ± 3)
nM, see the Figure 2.

Thus, by using the classic initial rate method and eight separate experiments (i.e., substrate
concentrations ranging from [S]0 = 5 nM to 120 nM), Faller et al. [5] obtained KM = (20 ± 3)
nM. In contrast, by using the present method based on Eqn (1), we used a single experiment at
[S]0 = 30 nM to arrive at KM = (21 ± 3) nM, essentially an identical value.

In summary, the results obtained by using standard method, based on multiple initial rates,
agrees nearly perfectly with the single progress curve method ( KM = 20 vs. 21 nM). Importantly,
the single progress curve method required a significantly lower expenditure in time, labor, and
materials.

4. Summary and conclusions

1. Using only a single progress curve we can obtain a well-defined estimate of KM and kcat.
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# parameter initial final ± std.err. cv,% note

1 kS, nM−1s−1 1 0.030 ± 0.003 8.7
2 Km, nM 10 20.6 ± 3.4 16.5
3 rP, – 1 0.996 ± 0.013 1.3
4 F0, nM -0.1 -0.32 ± 0.19 59.4

Table 2: Results of least-squares fit of experimental data in Figure 1 to Eqn (3).

Figure 2: Results of KM determination by the standard initial rate method [5]. The best-fit value
of the Michaelis constant was KM = (20 ± 3) nM.

2. The best-fit values are indistinguishable from the results obtained by the standard initial
rate method.

3. The initial rate method requires multiple experiments, as opposed to just one well-designed
experiment.

4. Thus the data-analytic method presented here potentially leads to significant savings in
time and materials.

5. The requisite fitting model is built into the software package DynaFit [2] (equation code
MichaelisMentenProgressKmKcat).

All experimental data utilized in this report, plus all DynaFit input (script) files that were
used to produce the report, are available for download from http://www.biokin.com/
TN/2016/02.
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Appendix

A. DynaFit scripts

A.1. Least squares fit to Eqn (3)

This DynaFit [2] script performs the fit or experimental data described in section 3.1 to the
built-in Eqn (3). The data file data.csv mentioned in the script below is a comma-separated
value (CSV) file exported from Microsoft Excel. The first column holds the reaction time in
seconds; the second column holds the concentration of the reaction product (dihydrotestosterone)
in nanomolar units.

[task]
task = fit
data = generic
code = built-in

[equation]
MichaelisMentenProgressKmKs

[parameters]
Eo = 0.05
So = 31
kS = 1 ?
Km = 10 ?
rP = 1 ?
Fo = -0.1 ?

[data]
variable t
directory ./proj/IMM/5alpha-reductase/data
sheet data.csv
column 2

[output]
directory ./proj/IMM/5alpha-reductase/output/fit

[settings]
{Output}

XAxisLabel = t, sec
YAxisLabel = [P], nM
PlotRatesData = y
WriteTeX = y

[end]

B. C-Language implementation of Lambert Omega function

This Appendix captures the complete ANSI C language source code published at the URL
listed below, last accessed October 28, 2016. The DynaFit [2] implementation of the Lambert W
function is a minor modification of the original source code listed below.

http://keithbriggs.info/software/LambertW.c
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/* Lambert W function.
Was ~/C/LambertW.c written K M Briggs Keith dot Briggs at bt dot com 97 May 21.
Revised KMB 97 Nov 20; 98 Feb 11, Nov 24, Dec 28; 99 Jan 13; 00 Feb 23; 01 Apr 09

Computes Lambert W function, principal branch.
See LambertW1.c for -1 branch.

Returned value W(z) satisfies W(z)*exp(W(z))=z
test data...

W(1)= 0.5671432904097838730
W(2)= 0.8526055020137254914
W(20)=2.2050032780240599705

To solve (a+b*R)*exp(-c*R)-d=0 for R, use
R=-(b*W(-exp(-a*c/b)/b*d*c)+a*c)/b/c

Test:
gcc -DTESTW LambertW.c -o LambertW -lm && LambertW

Library:
gcc -O3 -c LambertW.c

*/

#include <math.h>
#include <stdio.h>

double LambertW(const double z);
const int dbgW=0;

double LambertW(const double z) {
int i;
const double eps=4.0e-16, em1=0.3678794411714423215955237701614608;
double p,e,t,w;
if (dbgW) fprintf(stderr,"LambertW: z=%g\n",z);
if (z<-em1 || isinf(z) || isnan(z)) {

fprintf(stderr,"LambertW: bad argument %g, exiting.\n",z); exit(1);
}
if (0.0==z) return 0.0;
if (z<-em1+1e-4) { // series near -em1 in sqrt(q)

double q=z+em1,r=sqrt(q),q2=q*q,q3=q2*q;
return
-1.0
+2.331643981597124203363536062168*r
-1.812187885639363490240191647568*q
+1.936631114492359755363277457668*r*q
-2.353551201881614516821543561516*q2
+3.066858901050631912893148922704*r*q2
-4.175335600258177138854984177460*q3
+5.858023729874774148815053846119*r*q3
-8.401032217523977370984161688514*q3*q; // error approx 1e-16

}
/* initial approx for iteration... */
if (z<1.0) { /* series near 0 */
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p=sqrt(2.0*(2.7182818284590452353602874713526625*z+1.0));
w=-1.0+p*(1.0+p*(-0.333333333333333333333+p*0.152777777777777777777777));

} else
w=log(z); /* asymptotic */

if (z>3.0) w-=log(w); /* useful? */
for (i=0; i<10; i++) { /* Halley iteration */

e=exp(w);
t=w*e-z;
p=w+1.0;
t/=e*p-0.5*(p+1.0)*t/p;
w-=t;
if (fabs(t)<eps*(1.0+fabs(w))) return w; /* rel-abs error */

}
/* should never get here */
fprintf(stderr,"LambertW: No convergence at z=%g, exiting.\n",z);
exit(1);

}

#ifdef TESTW
/* test program... */
int main() {
int i;
double z,w,err;
for (i=0; i<100; i++) {

z=i/100.0-0.3678794411714423215955; w=LambertW(z);
err=exp(w)-z/w;
printf("W(%8.4f)=%22.16f, check: exp(W(z))-z/W(z)=%e\n",z,w,err);

}
for (i=0; i<100; i++) {

z=i/1.0e-1-0.3; w=LambertW(z);
err=exp(w)-z/w;
printf("W(%8.4f)=%22.16f, check: exp(W(z))-z/W(z)=%e\n",z,w,err);

}
return 0;

}
#endif

#ifdef INTW
int main() {
int i,n=1000;
double w,z,s=0,err;
for (i=1; i<=n; i++) {

z=i/(double)n;
w=LambertW(1/z)/(1+z);
s+=w;
printf("%8.4f %8.4f\n",z,w);

}
fprintf(stderr,"%8.4f\n",exp(s/n/log(2)));
return 0;

}
#endif
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