
1

Bio/Chemical Kinetics Made Easy

A Numerical Approach
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1. Case study: Inhibition of LF protease from B. anthracis

2. Method: Numerical Enzyme Kinetics
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Anthrax bacillus
CUTANEOUS AND INHALATION ANTHRAX DISEASE
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Lethal Factor (LF) protease from B. anthracis
CLEAVES MITOGEN ACTIVATED PROTEIN KINASE KINASE (MAPKK)

Inhibitor?
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Neomycin B: an aminoglycoside inhibitor
PRESUMABLY A "COMPETITIVE" INHIBITOR OF LF PROTEASE

Fridman et al. (2004) Angew. Chem. Int. Ed. Eng. 44, 447-452 
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Competitive inhibition - Possible mechanisms

Segel, I. (1975) Enzyme Kinetics, John Wiley, New York, p. 102 

MUTUALLY EXCLUSIVE BINDING TO ENZYME
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Competitive inhibition - Kinetics
AT VERY HIGH [SUBSTRATE], ANZYME ACTIVITY IS COMPLETELY RESTORED
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Non-competitive inhibition - A possible mechanism

Segel, I. (1975) Enzyme Kinetics, John Wiley, New York, p. 126 

NON-EXCLUSIVE BINDING, BUT TERNARY COMPLEX HAS NO CATALYTIC ACTIVITY
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Non-competitive inhibition - Kinetics
EVEN AT VERY HIGH [SUBSTRATE], ANZYME ACTIVITY IS NEVER FULLY RESTORED
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Compare saturation curves
DIAGNOSIS OF MECHANISMS: SAME OR DIFFERENT RATE AT VERY LARGE [S]?
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Compare "double-reciprocal" plots
DIAGNOSIS OF MECHANISMS: STRAIGHT LINES INTERCEPT ON VERTICAL AXIS?
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Traditional plan to determine inhibition mechanism
THE TRADITIONAL APPROACH

1. Measure enzyme activity at increasing [S]

Collect multiple substrate-saturation curves at varied [I]

2. Convert [S] vs. activity data to double-reciprocal coordinates

3. Perform a linear fit of transformed (double-reciprocal) data

4. Check if resulting straight lines intersect on the vertical axis

If yes, declare the inhibition mechanism competitive

Fridman et al. (2004) Angew. Chem. Int. Ed. Eng. 44, 447-452 
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Collect experimental data at varied [S] and [I]
THE RAW DATA
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Check for intersection of double-reciprocal plots
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Doubts begin to appear...

[I] = 0

IS THIS A STRAIGHT LINE?
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Mysterious substrate saturation data

[I] = 0

MICHAELIS-MENTEN KINETICS IS NOT SUPPOSED TO SHOW A MAXIMUM !
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Repeat substrate experiment at higher [S]

[I] = 0

SEE IF MAXIMUM HOLDS UP AT HIGHER [S]

[S] (μM)

0 20 40 60 80 100 120

V 
(a

.u
./s

ec
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 / [S]
0.0 0.1 0.2 0.3 0.4

1 
/ V

0

1

2

Bio/Chemical Kinetics Made Easy 17

Substrate inhibition in LF protease is real
HAS ANYONE ELSE SEEN IT?

Tonello et al. (2003) J. Biol. Chem. 278, 40075-78. 
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Rate equation for inhibition by substrate
WHAT DOES THE "BIG BLUE BOOK" SAY?

Segel, I. (1975) Enzyme Kinetics, John Wiley, New York, p. 126 
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Rate equation for inhibition by substrate + inhibitor
WHAT DOES THE "BIG BLUE BOOK" SAY?

?
Bio/Chemical Kinetics Made Easy

A Numerical Approach
Petr Kuzmič, Ph.D.

BioKin, Ltd.
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1. Case study: Inhibition LF protease from B. anthracis

2. Method: Numerical Enzyme Kinetics
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The task of mechanistic enzyme kinetics
SELECT AMONG MULTIPLE CANDIDATE MECHANISMS

concentration

initial rate

DATAcomputer

Select most plausible model

MECHANISMS 

competitive ?

E + S E.S E + P

E + I E.I

uncompetitive ?

mixed type ?

competitive ?
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From mechanistic to mathematical models
DERIVE A MATHEMATICAL MODEL FROM BIOCHEMICAL IDEAS

concentration

initial rate

DATA

computer

MATHEMATICAL MODEL
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Problem: Simple mechanisms ...
MERELY FIVE REACTIONS ...

• 2 reactants (A, B)
• 1 product (P)

• 5 reversible reactions
• 10 rate constant

E + A E.A

E + P

E + B E.B

E.A.B

+ B

+ A

"RANDOM BI-UNI" MECHANISM
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... lead to complex algebraic models

Segel, I. (1975) Enzyme Kinetics.
John Wiley, New York, p. 646.

E + A E.A

E + P

E + B E.B

E.A.B

+ B

+ A

"RANDOM BI-UNI" MECHANISM

MERELY FIVE REACTIONS ...
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A solution: Forget about algebra
POSSIBLE STRATEGY FOR MECHANISTIC MODEL BUILDING

• Do not even try to derive complex algebraic equations

• Instead, derive systems of simple, simultaneous equations

• Solve these systems using numerical methods
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Theoretical foundations: Mass Action Law
RATE IS PROPORTIONAL TO CONCENTRATION(S)

A products

MONOMOLECULAR REACTIONS

rate is proportional to [A]

A + B products

BIMOLECULAR REACTIONS

rate is proportional to [A] × [B]

- d [A] / d t = k [A] 

monomolecular rate constant
1 / time

- d [A] / d t = - d [B] / d t = k [A] × [B]

bimolecular rate constant
1 / (concentration × time)

“rate” … “derivative”
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Theoretical foundations: Mass Conservation Law

PRODUCTS ARE FORMED WITH THE SAME RATE AS REACTANTS DISAPPEAR

- d [A] / d t =A P + Q

EXAMPLE

COMPOSITION RULE ADDITIVITY OF TERMS FROM SEPARATE REACTIONS

mechanism:

d [B] / d t =A B

B C

k1

k2

+ d [P] / d t = + d [Q] / d t

- k2 [B]+ k1 [A]
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Composition Rule: Example

E + A
k+1

k-1

EA

EA + B
k+2

k-2

EAB

E + B
k+3

k-3

EB

EB + A
k+4

k-4

EAB

EAB
k+5

E + P + Q

EXAMPLE MECHANISM RATE EQUATIONS

d[P] / d t =

d[EAB] / d t =

Similarly for other species...

+ k+5 [EAB]

- k+5 [EAB]

+ k+2 [EA]×[B]

- k-2 [EAB]

+ k+4 [EB]×[A]

- k-4 [EAB]
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Program DYNAFIT (1996)

http://www.biokin.com/dynafit

Kuzmic P. (1996) Anal. Biochem. 237, 260-273.
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A "Kinetic Compiler" 

E + S ---> ES :  k1

ES ---> E + S :  k2

ES ---> E + P :  k3 

Input (plain text file):

d[E ] / dt = - k1 × [E] × [S]

HOW DYNAFIT PROCESSES YOUR BIOCHEMICAL EQUATIONS

E + S E.S E + P
k1

k2

k3

k1 × [E] × [S]

k2 × [ES]

k3 × [ES]

Rate terms: Rate equations:

+ k2 × [ES]
+ k3 × [ES]

d[ES ] / dt = + k1 × [E] × [S]
- k2 × [ES]
- k3 × [ES]

Similarly for other species...
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System of Simple, Simultaneous Equations 

E + S ---> ES :  k1

ES ---> E + S :  k2

ES ---> E + P :  k3 

Input (plain text file):

HOW DYNAFIT PROCESSES YOUR BIOCHEMICAL EQUATIONS

E + S E.S E + P
k1

k2

k3

k1 × [E] × [S]

k2 × [ES]

k3 × [ES]

Rate terms: Rate equations:

"The LEGO method"

of deriving rate equations
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Initial rate kinetics
TWO BASIC APPROXIMATIONS

1. Rapid-Equilibrium Approximation

2. Steady-State Approximation

E + S E.S E + P
k1

k2

k3

assumed very much slower than k1, k2

• no assumptions made about relative magnitude of k1, k2, k3

• concentrations of enzyme forms are unchanging

New in
DynaFit
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Initial rate kinetics - Traditional approach
DERIVE A MATHEMATICAL MODEL FROM BIOCHEMICAL IDEAS

concentration

initial rate

DATA

computer

MATHEMATICAL MODEL

E + S E.S E + P

E + I E.I
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Initial rate kinetics in DynaFit
GOOD NEWS: MODEL DERIVATION CAN BE FULLY AUTOMATED!

[task]
task = fit
data = rates
approximation = Steady-State

[mechanism]

E + A   <==> E.A    :  k1   k2
E.A + B <==> E.A.B  :  k3   k4
E + B   <==> E.B    :  k5   k6
E.B + A <==> E.A.B  :  k7   k8
E.A.B   <==> E + P  :  k9   k10

[constants]
...

DynaFit input file

computer

concentration

initial rate

MATHEMATICAL MODEL

MECHANISM
DATA

0 = [E] + [E.A] + [E.B] + [E.A.B] – [E]tot

0 = [A] + [E.A] + [E.A.B] – [A]tot

0 = [B] + [E.B] + [E.A.B] – [B]tot

0 = + k1[E][A] – k2[E.A] – k3 [E.A][B] + k4 [E.A.B] 

0 = + k5[E][B] – k6[E.B] – k7 [E.B][A] + k8 [E.A.B] 

0 = + k3 [E.A][B] + k7 [E.B][A] + k10 [E][P] – (k4+k8+k9)[E.A.B] 

CRANK!
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Initial rate kinetics in DynaFit vs. traditional method
WHICH DO YOU LIKE BETTER?

[task]
task = fit
data = rates
approximation = Steady-State

[reaction]
A + B --> P

[mechanism]

E + A   <==> E.A    :  k1   k2
E.A + B <==> E.A.B  :  k3   k4
E + B   <==> E.B    :  k5   k6
E.B + A <==> E.A.B  :  k7   k8
E.A.B   <==> E + P  :  k9   k10

[constants]
...

[concentrations]
...

E + A E.A

E + P

E + B E.B

E.A.B

+ B

+ A
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DynaFit model for inhibition by substrate
ENZYME KINETICS MADE EASIER

[reaction]    |  S ---> P
[enzyme]      |  E
[modifiers]   |  I

[mechanism]

E + S <===> E.S :  Ks dissociation
E.S + S <===> E.S.S :  Ks2 dissociation
E.S ---> E + P : kcat

...

Bio/Chemical Kinetics Made Easy 38

DynaFit model for inhibition by substrate + inhibitor
ENZYME KINETICS MADE EASIER

[reaction]    |  S ---> P
[enzyme]      |  E
[modifiers]   |  I

[mechanism]

E + S <===> E.S :  Ks dissoc  
E.S + S <===> E.S.S :  Ks2 dissoc
E.S ---> E + P : kcat
E + I <===> E.I :  Ki dissoc
E.S + I <===> E.S.I : Kis dissoc

[constants]

Ks = 1 ?, Ks2 = 1 ?, kcat = 1 ?
Ki = 1 ?, Kis = 1 ?

...

...

initial estimate

optimization flag
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How do we know which mechanism is "best"?
COMPARE ANY NUMBER OF MODELS IN A SINGLE RUN

[task]
task = fit | data = rates
model = mixed-type ?

[reaction]    |  S ---> P
[enzyme]      |  E
[modifiers]   |  I

...

[task]

task = fit | data = rates
model = competitive ?

...

[task]

task = fit | data = rates
model = uncompetitive ?

...
Akaike Information Criterion
Review: Burnham & Anderson (2004)
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The best model: mixed-type noncompetitive 
NEOMYCIN B IS NOT A COMPETITIVE INHBITOR OF LETHAL FACTOR PROTEASE

Kuzmic et al. (2006) FEBS J. 273, 3054-3062.
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Direct plot: maximum on dose-response curves 

Kuzmic et al. (2006) FEBS J. 273, 3054-3062.
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Double-reciprocal plot is nonlinear

Kuzmic et al. (2006) FEBS J. 273, 3054-3062.
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DR plot obscures deviations from the model

Kuzmic et al. (2006) FEBS J. 273, 3054-3062.
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Direct plot makes model departures more visible

Kuzmic et al. (2006) FEBS J. 273, 3054-3062.
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Summary: Enzyme kinetics made (almost) easy

HOW DO I BUILD A MATHEMATICAL MODEL FOR AN ENZYME MECHANISM?

• Let the computer derive your model - don't bother with algebra.

• For many important mechanisms, algebraic models don't exist anyway.

• The theoretical foundation is simple and well understood:

- mass action law
- mass conservation law

• The same set of      -like rules apply to all types of kinetic models:

- reaction progress curves
- initial reaction rates
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