

HOW DYNAFIT PROCESSES YOUR BIOCH	EMICAL EQUATIONS	
$E + S \xrightarrow{k_1} E.S \xrightarrow{k_3} E + P$		
Input (plain text file):	Rate terms:	Rate equations:
		$d[\boldsymbol{E}] / dt = -k_1 \times [E] \times [S]$
E + S> ES : kl	$k_1 \times [E] \times [S]$	+ $k_2 \times [ES]$ + $k_3 \times [ES]$
ES > E + S : k2	$k_2 \times [ES]$	$d[ES] / dt = + k_1 \times [E] \times [S]$
ES > E + P : k3	$k_3 imes [ES]$	$-k_3 \times [ES]$
		Similarly for other species.

MASS A	ACTION	I LAW AND MASS CONSERVATION	LAW IS APPLIED IN THE SAME WAY
		EXPERIMENT	DYNAFIT DERIVES A SYSTEM OF
chemistry biophysics armacology	/mology	Kinetics (time-course) Equilibrium binding	Ordinary differential equations (ODE) Nonlinear algebraic equations
ā	enz)	Initial reaction rates	Nonlinear algebraic equations
Bio <mark>Kin</mark>		Bio/Chemical K	inetics Made Easy 12

IS IT WORTH C	HASING AFTER <u>RATE</u> CONSTANTS?	
	Mbalaviele et al. (2009) J. Pharm. Exp. Ther. 329, 14-25	
	"PHA-408 is an ATP competitive inhibitor, which binds $\rm IKK-2$ tightly with a relatively slow off rate."	
	Puttini et al. (2008) haematologica 93, 653-61	
	"The present results suggest a slower <u>off-rate</u> (dissociation rate) of [a novel Abl kinase inhibitor] compared to imatinib as an explanation for the increased cellular activity of the former."	
	Tummino & Copeland (2008) Biochemistry 47, 5481-92	
	" the extent and duration of responses to receptor-ligand interactions depend greatly on the time period over which the ligand is in residence on its receptor."	

AUTOMATICALLY DERIVED BY DYNAFIT	$\begin{bmatrix} \mathbf{I} \cdot \mathbf{E} \cdot \\ \mathbf{K}_{d} \end{bmatrix}_{k_{d1}}$	$ \begin{array}{c} k_{aA} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	
system of simultaneous ordinary differential equations			
[mechanism]	K _d	I•E•A	DynaFit Innut
[mechanism]	Kd	I+E+A	DynaFit Input
[mechanism] E + In <===> E.In	:	kaI	DynaFit Input
[mechanism] E + In <===> E.In E + Tr <===> E.Tr	: :	kaI kaT	DynaFit Input kdI kdT
[mechanism] E + In <===> E.In E + Tr <===> E.Tr E + Ab <===> E.Ab	: :	kaI kaT kaA	<i>DynaFit Input</i> kdI kdT kdA
[mechanism] E + In <===> E.In E + Tr <===> E.Tr E + Ab <===> E.Ab E.In + Ab <===> E.In.Ab		kaI kaT kaA kaA	DynaFit Input kdI kdT kdA kdA
[mechanism] E + In <===> E.In E + Tr <===> E.Tr E + Ab <===> E.Ab E.In + Ab <===> E.In.Ab E.Ab + In <===> E.In.Ab		kaI kaT kaA kaA kaA	DynaFit Input kdI kdT kdA kdA kdI
[mechanism] E + In <===> E.In E + Tr <===> E.Tr E + Ab <===> E.Ab E.In + Ab <===> E.In.Ab E.Ab + In <===> E.In.Ab E.Tr + Ab <===> E.Tr.Ab		kaI kaT kaA kaA kaI kaA	DynaFit Input kdI kdT kdA kdA kdI kdA

