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Statement of the problem

There are no traditional (algebraic) rate equations for many important cases:

• Time-dependent inhibition in the general case
substrate depletion
enzyme deactivation

• Tight binding inhibition in the general case
impurities in inhibitors
dissociative enzymes

• Auto-activation inhibition
e.g., protein kinases

• Many other practically useful situations.
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Solution

• Abandon traditional algebraic formalism of enzyme kinetics

• Deploy numerical (iterative) fitting modes instead

This is approach is not new: SOFTWARE

D. Garfinkel (1960’s - 1970’s) BIOSYM
C. Frieden (1980’s - 1990’s) KINSIM
P. Kuzmic (2000’s - present) DynaFit
K. Johnson (2010’s - present) Kinetic Explorer
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Introduction: A bit of theory
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Numerical vs. algebraic mathematical models

FROM A VARIETY OF ALGEBRAIC EQUATIONS TO A UNIFORM SYSTEM OF DIFFERENTIAL EQUATIONS

EXAMPLE: Determine the rate constant k1 and k-1 for A + B         AB

ALGEBRAIC EQUATIONS DIFFERENTIAL EQUATIONS

k1

k-1

d[A]/dt = -k1[A][B] + k-1[AB]

d[B]/dt = -k1[A][B] + k-1[AB]

d[AB]/dt = +k1[A][B] – k-1[AB]

Applies only when [B] >> [A] Applies under all conditions
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Advantages and disadvantages of numerical models

THERE IS NO SUCH THING AS A FREE LUNCH

ALGEBRAIC
MODEL

can be derived for any molecular mechanism

can be derived automatically by computer

can be applied under any experimental conditions

can be evaluated without specialized software

requires very little computation time

does not always require an initial estimate

is resistant to truncation and round-off errors

has a long tradition: many papers published
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A "Kinetic Compiler" 

E + S ---> ES :  k1

ES ---> E + S :  k2

ES ---> E + P :  k3 

Input (plain text file):

d[E ] / dt = - k1 × [E] × [S]

HOW DYNAFIT PROCESSES YOUR BIOCHEMICAL EQUATIONS

E + S E.S E + P
k1

k2

k3

k1 × [E] × [S]

k2 × [ES]

k3 × [ES]

Rate terms: Rate equations:

+ k2 × [ES]
+ k3 × [ES]

d[ES ] / dt = + k1 × [E] × [S]
- k2 × [ES]
- k3 × [ES]

Similarly for other species...
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System of Si mple, Si multaneous Equations 

E + S ---> ES :  k1

ES ---> E + S :  k2

ES ---> E + P :  k3 

Input (plain text file):

HOW DYNAFIT PROCESSES YOUR BIOCHEMICAL EQUATIONS

E + S E.S E + P
k1

k2

k3

k1 × [E] × [S]

k2 × [ES]

k3 × [ES]

Rate terms: Rate equations:

"The LEGO method"

of deriving rate equations
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DynaFit can analyze many types of experiments

MASS ACTION LAW AND MASS CONSERVATION LAW IS APPLIED IN THE SAME WAY

Kinetics (time-course)

Equilibrium binding

Initial reaction rates

Ordinary differential equations (ODE)

Nonlinear algebraic equations

Nonlinear algebraic equations

EXPERIMENT DYNAFIT DERIVES A SYSTEM OF ...
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Example 1: Inhibition of HIV protease 

“Tight binding” inhibition constant from initial rat es

Use K i
app values, not IC 50’s

Wha’t wrong with IC50’s ?
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Measures of inhibitory potency

1. Inhibition constant

2. Apparent K i

3. IC50

Depends on

[S]        [E]

NO

YES

YES

NO

NO

YES

K i

K i
* = K i (1 + [S]/KM)

IC50 = K i (1 + [S]/KM) + [E]/2

Example:

Competitive inhibitor

INTRINSIC MEASURE OF POTENCY:

DEPENDENCE ON
EXPERIMENTAL CONDITIONS

[E] « K i:        IC50 ≈ K i
*

∆G = -RT log K i

[E] ≈ K i:        IC50 ≠ K i
*

"CLASSICAL" INHIBITORS:

"TIGHT BINDING" INHIBITORS:
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Tight binding inhibitors : [E] ≈ K i

HOW PREVALENT IS "TIGHT BINDING"?

... NOT SHOWN

log K  i *

-12 -9 -6 -3 0

N

0

500

1000

1500

2000

A typical data set:
Completely inactive:

Tight binding:

~ 10,000 compounds

~ 1,100
~ 400

Data courtesy of
Celera Genomics
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Problem: Negative K i from IC 50

log [I]

-11 -10 -9 -8 -7 -6

ra
te
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0.4
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0.8

1.0

1.2

1.4

-inf

nHill

IC50

1.4  

2.9 nM

[E] = 7.0 nM

K i* = 2.9 - 7.0 / 2 = - 0.6 nM

FIT TO FOUR-PARAMETER LOGISTIC:

K i
* = IC50 - [E] / 2

Data courtesy of
Celera Genomics
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Solution: Do not use four-parameter logistic

log [I]

-11 -10 -9 -8 -7 -6

ra
te

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

-inf

[E]nominal = 7.0 nM

[E]fitted = 4.5 nM

K i* = 0.9 nM

FIT TO MODIFIED MORRISON EQUATION: P. Kuzmic et al. (2000) Anal. Biochem. 281, 62-67.
P. Kuzmic et al. (2000) Anal. Biochem. 286, 45-50.

Data courtesy of
Celera Genomics
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live demo

DynaFit in K i
app determination

• fitting model is very simple to understand:

E + I <==> EI
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Comparison of results

( )nICI

PP
Pv

50

0max
max

/][1+

−
−= IC50 = (1.3 ± 0.13) nM

( )
][2

][4][][][][ *2**

0 E

KEKIEKIE
VVv iii

b

+−−+−−
+=

Ki
* = (0.10 ± 0.05) nM

Fitting model Result

Ki
* = (0.10 ± 0.05) nME + I <==> EI :   Ki*

10 x !
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Fitting models for enzyme inhibition: Summary

• Apparent inhibition constant K i
* is preferred over IC50

• Modified Morrison equation is preferred over
four-parameter logistic equation:

• A symbolic model (DynaFit) is equivalent and more convenient:

MEASURE OF INHIBITORY POTENCY

MATHEMATICAL MODELS

( )
][2

][4][][][][ *2**

0 E

KEKIEKIE
VVv iii

b

+−−+−−
+=

E + I <==> EI :     Ki*
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Recent IC 50 work from Novartis, Basel

Patrick Chène et al. (2009) "Catalytic inhibition of topoisomerase
II by a novel rationally designed ATP-competitive purine analogue"
BMC Chemical Biology 9:1

IC50 = [E]/2 + Ki*
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Challenges of moving from IC 50 to K i
app

• Legitimate need for continuity
structure of existing corporate databases

• Simple inertia (“fear of the unknown”)

• Lack of awareness

POSSIBLE SOLUTIONS:

• Gradual transition (report both IC50 and Ki
* for a period of time)

• Re-compute historical data: Ki* = IC50 – [E]/2
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Finer points of K i
app determination

Sometimes [E] must be optimized, but sometimes it must not be:

Kuzmic, P., et al. (2000) “High-throughput screening of enzyme inhibitors:
Simultaneous determination of tight-binding inhibition constants and
enzyme concentration” Anal. Biochem. 286, 45-50

“Robust regression” analysis (exclusion of outliers):

Kuzmic, P. (2004) “Practical robust fit of enzyme inhibition data”
Meth. Enzymol. 383, 366-381

Serial dilution is not always the best:

Kuzmic, P. (2011) “Optimal design for the dose–response screening of
tight-binding enzyme inhibitors” Anal. Biochem. 419, 117-122
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Example 1: TPH1 inhibition

Determination of initial reaction rates

from nonlinear progress curves

Numerical Enzyme Kinetics 22

First look at raw experimental data

TPH1 continuous assay (Viral Patel, 2012-05-23)

time, sec
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[Trp]
[BH4]
[TPH1]

= 5.27 µM
= 11.9 µM
= 0.01 µM  

NOTE THE EXCELLENT REPRODUCIBILITY: THESE ARE TWO REPLICATES ON TOP OF EACH OTHER

TPH1 continuous assay (Viral Patel, 2012-05-23)
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The text-book recipe: Linear fit

Stein, R. “Kinetics of Enzyme Action” (2011), sect. 2.5.4

Standard curve 1 µM of product (5-HT)

corresponds to an increase

in fluorescence of 1919.9 RFU

STANDARD APPROACH: FIT A STRAIGHT LINE TO THE “INITIAL PORTION” OF EACH CURVE

Fluorescence change expected at 10% conversion: ~ 1000 RFU
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Looking for linearity at less than 10% conversion

TPH1 continuous assay (Viral Patel, 2012-05-23)

time, sec

0 500 1000 1500 2000 2500 3000 3500
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[Trp]
[BH4]
[TPH1]

= 5.27 µM
= 11.9 µM
= 0.01 µM  

IS THIS A “STRAIGHT LINE”?

1000 RFU
10% conversion

slope cannot
change abruptly

slope must be
changing continously
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Numerical analysis: Fit to a full system of differe ntial equations

A NONLINEAR MODEL OF COMPLETE REACTION PROGRESS

[task]
data = progress
task = fit

[mechanism]
E + S <==> ES     :     kas kds
ES ---> E + P     :     kdp

[constants]
kas =   1000
kds = 100000 ?
kdp =      1 ?

[concentrations]
E = 0.01

[responses]
P = 100 ?

[data]
sheet B01.txt
column    2  | offset auto ? | concentration S = 60

[output]
directory .../output/fit-B01
rate-file .../data/rates/B01v.txt

DYNAFIT INPUT

DYNAFIT OUTPUT
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DynaFit auto-generated fitting model

A NONLINEAR MODEL OF COMPLETE REACTION PROGRESS

[mechanism]
E + S <==> ES     :     kas kds
ES ---> E + P     :     kdp
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Instantaneous rate plot

THE SLOPE OF THE PROGRESS CURVE DOES CHANGE ALL THE TIME

fluorescence: rate of change in fluorescence:

t = 0: rate ~ 1.0

t = 600: rate ~ 0.8

20 % drop in reaction rate over the first 10 minutes
(less than 10% substrate conversion)
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live demo

DynaFit in “full automation” mode

• suitable for routine processing of many compounds
• mechanism is assumed to be known independently
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Example 2: Inhibition of 5 αααα-ketosteroid reductase 

“Slow, tight” binding

Model discrimination analysis
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Possible molecular mechanisms of time-dependent inh ibition

E + I E.I
slow

E + I E.I
fast

E.I*
slow

etc. (several other possibilities)

Slow binding proper

Rearrangement of initial enzyme-inhibitor complex 
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Model discrimination analysis in DynaFit

ANY NUMBER OF ALTERNATE KINETIC MODELS CAN BE COMPARED IN A SINGLE RUN

[task]
data  = progress   |   task  = fit  |  model = one-step ?

[mechanism]
E + S ---> ES :          kaS
ES ---> E + P :          kdP
E + I <==> EI :          kaI kdI

...

[task]
data  = progress   |   task  = fit  |  model = two-step ?

[mechanism]

E + S ---> ES :          kaS
ES ---> E + P :          kdP
E + I <==> EI :          kaI kdI
EI <==> EJ :          kIJ kJI

...

DYNAFIT INPUT SCRIPT FILE:
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live demo

DynaFit in “model selection” mode

• model selection criteria (AIC, BIC)
• residual analysis
• use common sense to check results
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Summary and conclusions

Benefits of using DynaFit in the study of enzyme inhibition:

• No mathematical models, only symbolic models (E + I <==> EI)

Everybody can understand this.
This prevents making mistakes and facilitates “transfer of knowledge”.

• Automation

Can be used to process 1000’s of compounds in a single run.
Automatic model selection (Bayesian Information Criterion).

• No restrictions on experimental design

Not necessary to have large excess of inhibitor (“tight binding”)

• No restrictions on reaction mechanism

Any number of interactions and molecular species
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Possible deployment at Novartis / Horsham

Free support from BioKin Ltd included with site license:

• Periodic data review via email

Send your raw data, get results back in 72 hours (in most cases).

• Phone support 

Call +1.617.209.4242 any time during US (EST) business hours. 

• Periodic on-site “DynaFit course”

Once a year (either in the Fall or Spring); one-day workshop format.

• Free upgrades

DynaFit continues to evolve (e.g., “Optimal Experimental Design”)


